p-VEX: A Reconfigurable and Extensible Softcore
VLIW Processor

Accepted at the IEEE International Conference on Field-Programmable Technology 2008 (ICFPT’08)

Stephan Wong, Thijs van As

Computer Engineering Laboratory

Faculty of Electrical Engineering, Mathematics and Computer Science

Delft University of Technology
Delft, The Netherlands

Geoffrey Brown
Department of Computer Science
Indiana University
Bloomington IN, USA
Email: geobrown@cs.indiana.edu

Email: J.S.S.M.Wong @tudelft.nl, t.vanas@gmail.com

Abstract—This paper presents the architectural design of a re-
configurable and extensible Very Long Instruction Word (VLIW)
processor. In addition to architectural extensibility, our processor
also supports reconfigurable operations. Furthermore, we present
an application development framework to optimally exploit the
freedom of reconfigurable operations. Because our processor is
based on the VEX ISA, we already have a good compiler which is
able to deal with ISA extensibility and reconfigurable operations.

Our results show that different configurations of our proces-
sor lead to considerable cycle count reductions for a selected
benchmark application.

I. INTRODUCTION

The design of (embedded) architectures on reconfigurable
hardware is becoming more popular now that classical
drawbacks are diminishing. Field-Programmable Gate Arrays
(FPGAs) are constantly improving and provide a technology
platform that allows fast and complex reconfigurable designs.
In many cases, the utilization of FPGAs implies a large
reduction in development costs or an enormous speedup of
the implemented algorithm. Applications in the multimedia
domain happen to contain a lot of Instruction Level Parallelism
(ILP), because they typically consist of many independent
repetitive calculations. Very Long Instruction Word (VLIW)
processors exploit ILP by means of a compiler that is com-
pletely aware of the target processor architecture.

In this paper, the design and implementation are presented
of an embedded reconfigurable and extensible open source
VLIW processor, accompanied by a development framework.
Our processor architecture is based on the VEX Instruction
Set Architecture (ISA), as introduced in [1]. VEX offers a
scalable technology platform that allows variation in many
aspects, including instruction issue width, organization of
functional units, and instruction set. A software development
toolchain for VEX is made freely available by Hewlett-Packard
[2]. Our design provides mechanisms that allow parametric
extensibility of the new processor, called p-VEX. Both re-
configurable operations, as well as the versatility of VEX
machine models are supported by p-VEX. Our processor and
framework are targeted at VLIW prototyping research and
embedded processor design.

The remainder of this paper is organized as follows. Section
II discusses related work and introduces the background for the
VEX VLIW architecture. Section III describes the design of
p-VEX, focusing on the processor organization, the instruction
layout and the extensibility of our architecture. Subsequently,
Section IV describes the application development framework.
Experimental performance and resource usage results are
presented in Section V. Finally, conclusions are presented in
Section VI.

More information, as well as all source code can be found
at http://r-vex.googlecode.com/.

II. BACKGROUND
A. Related Work

Different softcore approaches resulted in FPGA-based sys-
tem designs that achieved high performances. Well-known
RISC softcore processors like MicroBlaze (Xilinx) and Nios
IT (Altera) provide efficient sequential architectures, optimized
for the reconfigurable devices of their respective designers.
However, these processors only expose a small degree of
extensibility. Additionally, they are closed source and in many
cases not free to use.

Approaches like MOLEN [3] and Chimaera [4] support
issuing of reconfigurable operations. These approaches can be
used as an extension or modification to existing architectures.

The first VLIW softcore processor found in literature
is Spyder [5]. Later, several customizable VLIW softcore
projects like [6], [7] and [8] were presented. Limitations of
the former architectures are mainly the exposed extensibility
(like adjusting the issue-width and changing the number of
functional units), or the absence of a good software toolchain.
In [9], a parametric customizable VLIW processor based on a
subset of the EPIC ISA [10] is presented. This processor also
supports reconfigurable operations. However, the complete
support for custom operations throughout the (simulation)
software and hardware toolchain and the flexible machine
models that enable fast trade-off studies on functional units
make our design stand out.

Another hardware implementation of a VEX machine is
presented in [11]. In this implementation, VEX assembly is

used as an input to a more conventional hardware compiler.
So instead of building a general purpose VEX VLIW processor
to execute code, it converts the assembly code into hardware.

B. The VEX VLIW Architecture

The VEX (VLIW Example) ISA [1] is loosely modeled on
the ISA of the HP/ST Lx [12] family of VLIW embedded
cores. The VEX ISA supports multi-cluster machines, where
each cluster provides a separate VEX implementation. Each
cluster has support for multi-issue widths. The extensibility of
the instruction set enables the definitions of special-purpose
instructions in an organized way. VEX does not support
floating point operations. By default, a VEX cluster has 4
ALU units, 2 multiplier (MUL) units, 1 branch control (CTRL)
unit, 1 memory access (MEM) unit, 64 32-bit general-purpose
registers (GR) and 8 1-bit branch registers (BR) per cluster.
Also, an instruction- and data-memory cache of 32 kB is
present. A VEX instruction consists of one or more syllables,
depending on the issue-width. A syllable can be seen as a
single ‘RISC-style’ instruction.

A VEX software toolchain is provided by Hewlett-Packard
[2], which offers a C compiler and a simulator. Both tools are
parametric by means of machine models. The VEX C compiler
is a derivation of the Lx/ST200 C compiler, itself a descendant
of the Multiflow C compiler. Profiling of compiled applications
is supported via the GNU Profiler gprof. The VEX simulator
is a compiled simulator which translates the target executable
binary code to a binary executable that can run on the host
system.

The choice for the VEX ISA was made because of the
quality of the available toolchain and the highly configurable
ISA. Lx performance benchmarks in [12] show that a 1-
cluster Lx processor running at 300 MHz achieves higher a
performance on application-specific SPECINT’95 benchmarks
than a Pentium II at 333 MHz. These aspects provide a solid
basis for a reconfigurable and extensible VLIW framework.

III. DESIGN
A. Organization

A four-stage design consisting of fetch, decode, execute and
writeback stages was applied for p-VEX. The standard config-
uration of a 1-cluster VEX machine was used for a default p-
VEX processor. We decided not to implement instruction- and
data-memory caches for our prototype, because the memory
would be on-chip.

Figure 1 depicts the organization of a 4-issue p-VEX
processor. The fetch unit fetches a VLIW instruction from
the attached instruction memory, and splits it into syllables
that are passed to the decode unit. In this stage, register
contents used as operands are fetched from the register files.
The actual operations take place in either the execute unit, or
in one of the parallel CTRL or MEM units. ALU and MUL
operations (respectively, A and M in Figure 1) are performed
in the execute stage. This stage is implemented parametric, so
that the number of ALU and MUL functional units could be
adapted. All jump and branch operations are handled by the

(I . —

Instruction . . q Data
Memory Fetch Decode Execute Writeback Memory
— [E E—

p-VEX 1
Fig. 1. p-VEX organization (4-issue)

127 95 63 31 [
[syllable 3 | syllable 2 | syllable 1 | syllable 0]
' ' ' '

{ALU, MEM} {ALU, MUL} {ALU, MUL} {ALU, CTRL}

Fig. 2. Instruction layout

CTRL unit, and all data memory load and store operations are
handled by the MEM unit. All write activities are performed in
the writeback unit, to ensure that all targets (GR, BR, Program
Counter (PC) or external memory)are written back at the same
time. To determine the write targets per syllable, a target
signal is assigned in the decode unit for each syllable. The
different write targets could be the GR register file, BR register
file, data memory or PC.

B. Instruction Layout

The standard set of VEX operations consists of 73 oper-
ations. Opcodes for the inter-cluster operations described by
the VEX ISA are reserved, but not used as p-VEX (currently)
supports only 1-cluster configurations. We complemented this
default set of operations with two extra operations: STOP and
LONG_IMM. The former operation tells p-VEX when to stop
fetching instructions from the instruction memory. The latter
is used when long immediate operands are handled. To be able
to fit opcode bits, register addresses bits and syllable meta-data
bits in one syllable, 32 bit syllables are used.

An instruction, by default consisting of four syllables, is a
concatenation of all syllables with syllable O starting at bit
0. This is not very efficient, and there are many compression
techniques possible to reduce the instruction size. Because this
was not our primary concern for the current design, we left
this unoptimized. Figure 2 depicts the instruction layout, as
well as the allowed issue-slots per Functional Unit (FU). In
order to utilize the FUs optimally, we spread them across the
issue-slots evenly.

The VEX standard defines the use of three types of imme-
diate operands: 9 bit short immediate operands, 24 bit branch
offset immediate operands and 32 bit long immediate operands.
The first two types are embedded in a single syllable, but the
last one is spread over more syllables. We decided to change
the size of a branch offset immediate operand to 12 bit, to use
our syllable layout templates more efficient. Every syllable has
an immediate switch field consisting of 2 bits that describe
the type of immediate operand within the syllable. All ALU

p-OPS definitions

C

< L

C
I5h

101
1001

1
[31 7 bit opcode 6bitdstGR | 65b|t src1GR_ | 6bit src; GR _ [3bdstBR]L] s]

[7itopoode 6bitdstGR___ | 6bitsrci GR__ | 9 bit shortimmediate | L[F |

[7bitopoode 6 bit link register | 12 bit branch offset immediate [sbdstBR[L]F]

[7itopoode [4 4] 6bitastGR | 6bitsrct GR__ | 10bitlong immediate [0-9] [F | g

[LONG_IMM [22 bit long immediate [10 - 31] [-TL]F] \—>

Fig. 3. Syllable layout

and MUL operations are overloaded to support both register
operands as well as immediate operands.

Figure 3 depicts the syllable layout templates. The shaded
bit-field shows the content of the immediate switch. Not all
fields are evaluated in all cases. For example, when an ALU
operation has no BR destination operand, the 3 bits dst BR
field holds don’t care values. Special attention should be paid
to the long immediate syllables. As these operands are always
spread over two syllables, a LONG_IMM opcode could not be
issued without a preceding syllable with its immediate switch
setto 11.

p-VEX syllables include two bits with syllable meta-data,
the L and F bits. The L bit denotes whether a syllable is the
last syllable in an instruction and the F bit denotes whether
it is the first syllable in an instruction. As the first syllable
of a long immediate operand could not be the last syllable
in an instruction, this syllable does not provide an L field. In
the current p-VEX prototype these fields are not evaluated,
but these bit-fields allow the implementation of a more so-
phisticated syllable packing mechanism (as instructions with
variable length can be evaluated this way).

All logical and select ALU operations can have a GR
register or a BR register as their destination operand. When
the GR destination address equals $r0 (which is hardwired
to zero/ground), the BR destination address is used to store
the result of the operation. Four ALU operations operate on
three source operands: two GR register operands, and one
BR register operand. Because some of these operations are
also able to operate on either a GR register or BR register as
destination, a new location for the BR source register address
should be assigned. We assigned special opcodes for these
operations, so that the 4 most significant bits are unique. The
least significant bits of the opcode field are used in this case
to pack the BR source address.

C. Extensibility

p-VEX extensibility is provided by two mechanisms, which
will be discussed separately.

1) p-OPS: The VEX software toolchain supports the use of
custom instructions via pragmas inside the application code,
as described earlier. With p-OPS we provide a mechanism
to execute these operations in an p-VEX processor. In the
current p-VEX prototype, it takes only a few lines of VHDL
code to add a custom operation to the architecture. One of
the 24 available p-OPS opcodes should be chosen, and a
template VHDL function should be extended with the custom

HP VEX compiler p-ASM assembler

C source VEX assembly p-VEX binary

piin

C

iy

p-VEX machine model

C

Fig. 4. Application development framework

functionality. p-OPS are not restricted combinatorial operators;
sequential p-OPS consisting of multiple atomic operations are
also allowed, as long as the design gets properly synthesized
and routed.

2) VEX Machine Models: Currently, the following proper-
ties of p-VEX are parametric:

o Syllable issue-width

e Number of ALU units

e Number of MUL units

o Number of GR registers (up to 64)

o Number of BR registers (up to 8)

o Types of accessible FUs per syllable

o Width of memory busses

IV. APPLICATION DEVELOPMENT FRAMEWORK

To be able to efficiently perform experiments and develop
applications for the p-VEX platform, a framework (depicted
in Figure 4 is being worked on. It consists of two steps:

1) Compile a piece of C code with the VEX compiler. A
VEX machine model should be present as a compiler
directive when a custom configuration is targeted. When
p-OPS are used, the code should be augmented with
pragmas that define them.

2) The assembly file generated by the compiler should be
assembled by p-ASM, which generates an instruction
ROM for p-VEX. p-OPS definitions, as well as the
machine model definitions should also be passed to p-
ASM.

V. EXPERIMENTAL RESULTS

The p-VEX organization has been described in VHDL and
simulated with Mentor Graphics ModelSim SE 6.3d. Synthesis
was performed with Xilinx Synthesis Technology (XST) from
the Xilinx ISE 8.1.03i suite. As the target reconfigurable
technology, the Xilinx Virtex-II PRO (XC2VP30) FPGA was
chosen, embedded on the XUP V2P development board by
Digilent.

All experiments were performed on a non-pipelined p-VEX
system with 32 general purpose registers (GR). A data memory
of 1 kB implemented using Block RAM was connected to p-
VEX to store results. The issue width of p-VEX was varied

between 1, 2 and 4. All configurations had the same number
of ALU units as their issue width. The 2- and 4-issue p-VEX
configurations had 2 MUL units. p-ASM was used to assemble
a hand coded VEX assembly benchmark. The application code
was loaded in the instruction memory before synthesis.

We developed a debugging UART interface to transmit
data via the serial RS-232 protocol. This interface invoked
a transmission of the hexadecimal representation of the data
memory contents, as well as the contents of the internal p-
VEX cycle counter register.

A. Fibonacci Sequence Benchmark

We hand coded an assembly program that calculates the
45th Fibonacci number from the Fibonacci sequence. We
created the code for 1-, 2- and 4-issue p-VEX configurations.
We also created two p-OPS, FIB3 and FIB4. These operations
calculate, respectively, 3 and 4 Fibonacci iterations in one
cycle. We adapted our 4-issue code to use the p-OPS as a
final benchmark. The resulting numbers of executed clock
cycles are presented in Table I (the p-OPS results are between
brackets). Because the code was efficient to parallelize, we can
see that the number of clock cycles almost halves when the
issue width doubles. After using p-OPS, we see the expected
speedup of almost 4. Because the core of the application
consists of only 2 VLIW instructions, we are able to achieve
such a high speedup by only adding 2 p-OPS.

B. Resource Usage

The aforementioned p-VEX configurations were synthe-
sized without any memories connected, to check the resource
usage. Table I presents the results of the measurements. Next
to the number of slices, the percentage of slices used from the
total available slices on the FPGA is presented. Increasing
the issue-width has a large impact on the resource usage.
This can be mainly ascribed to the growing GR register file.
Because the GR register file in the 1-issue p-VEX can be
totally implemented in dedicated Xilinx 2-port Block RAM,
the implementation uses no slices. The 2- and 4-issue p-
VEX configurations, however, require 4- and 8-port register
files, respectively. These memory configurations can not be
instantiated as Xilinx primitive elements, therefore they need
to be formed by slices. An interesting trade-off might be a
multi-cluster machine configuration consisting of single-issue
p-VEX cores instead of one single-cluster, multi-issue p-VEX
machine. As the VEX compiler has the ability to schedule
data moves across VEX clusters, we already have architectural
support for this.

All configurations were synthesized to run at the same clock
speed of 89.44 MHz.

VI. CONCLUSIONS

In this paper, we presented p-VEX, an open source reconfig-
urable and extensible VLIW processor based on the VEX ISA
[1]. Various architectural aspects like operation issue-width,
the number of functional units and the sizes of register files
are parametric. Reconfigurable operations are also supported

TABLE I
RESOURCE USAGE FOR DIFFERENT p-VEX CONFIGURATIONS

’ p-VEX ‘ Cycles ‘ Max. freq. ‘ Slices ‘ Slices GR ‘
1-issue 1906 | 89.44 MHz 1895 (13%) 1 (0%)
2-issue 1080 | 89.44 MHz 5105 (37%) | 3370 (24%)
4-issue | 537 (141) | 89.44 MHz | 10433 (76%) | 3927 (28%)

by means of p-OPS. Because of the existing extensible VEX
compiler by HP [2], we already possess a good compiler for
our processor.

The processor is accompanied by an application develop-
ment framework, to optimally exploit the various degrees
of freedom for development. Our processor and framework
are targeted at VLIW prototyping research and development
of embedded processors. Experimental results showed cycle
count reductions when exploiting the extensibility of the ISA
and operations for a selected benchmark.

For future work we are interested whether pipelining and
variations of pipeline and memory latencies would help the
overall performance. Because the VEX machine model is
already parametric in these areas, we already possess a very
flexible framework to exploit such architectural trade-offs.

REFERENCES

[1] J. Fisher, P. Faraboschi, and C. Young, Embedded Computing: A VLIW
Approach to Architecture, Compilers and Tools. Morgan Kaufmann,
2004.

[2] Hewlett-Packard Laboratories. VEX Toolchain. [Online]. Available:
http://www.hpl.hp.com/downloads/vex/

[3] S. Vassiliadis, S. Wong, G. N. Gaydadjiev, K. Bertels, G. Kuzmanov,
and E. M. Panainte, “The MOLEN Polymorphic Processor,” in IEEE
Transactions on Computers, vol. 53, no. 11, Sep 2004, pp. 1363-1375.

[4] S. Hauck, T. Fry, M. Hosler, and J. Kao, “The Chimaera Reconfigurable
Functional Unit,” in /EEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 12, no. 2, Feb 2004.

[5] C. Iseli and E. Sanchez, “Spyder: A Reconfigurable VLIW Processor
using FPGASs,” in IEEE Workshop on FPGAs for Custom Computing
Machines, 1993., Apr 1993, pp. 17-24.

[6] V. Brost, F. Yang, and M. Paindavoine, “A modular VLIW Processor,” in
IEEE International Symposium on Circuits and Systems, ISCAS 2007.,
Apr 2007, pp. 3968 — 3971.

[71 A. Lodi, M. Toma, F. Campi, A. Cappelli, and R. Canegallo, “A
VLIW Processor with Reconfigurable Instruction Set for Embedded
Applications,” in IEEE Journal on Solid-State Circuits, vol. 38, no. 11,
Jan 2003, pp. 1876 — 1886.

[8] A. K. Jones, R. Hoare, D. Kusic, J. Fazekas, and J. Foster, “An
FPGA-based VLIW Processor with Custom Hardware Execution,” in
FPGA °05: Proceedings of the 2005 ACM/SIGDA 13th International
Symposium on Field Programmable Gate Arrays. New York, NY, USA:
ACM, 2005, pp. 107-117.

[91 W. Chu, R. Dimond, S. Perrott, S. Seng, and W. Luk, “Customisable
EPIC Processor: Architecture and Tools,” in DATE ’04: Proceedings of
the conference on Design, automation and test in Europe, vol. 3, Feb
2004.

[10] M. Schlansker and B. Rau, “EPIC: Explicitly Parallel Instruction Com-
puting,” in Computer, vol. 33, no. 2, Feb 2000, pp. 37-45.

[11] M. Koester, W. Luk, and G. Brown, “A Hardware Compilation Flow For
Instance-Specific VLIW Cores,” in Proceedings of the 18th International
Conference on Field Programmable Logic and Applications (FPLOS),
Sep 2008.

[12] P. Faraboschi, G. Brown, J.A Fisher, G. Desoli, and F. Homewood, “Lx:
A Technology Platform for Customizable VLIW Embedded Processing,”
in Proceedings of the 27th annual International Symposium of Computer
Architecture, June 2000, pp. 203-213.

