
Microprocessor Soft-Cores:
An Evaluation of Design Methods and Concepts on FPGAs

Pieter Anemaet (1159100), Thijs van As (1143840)
{P.A.M.Anemaet, T.vanAs}@student.tudelft.nl

Computer Architecture (Special Topics), ET4 078
Department of Computer Engineering

Faculty of Electrical Engineering, Mathematics & Computer Science
Delft University of Technology

Abstract

Reconfigurable computer architectures are be-
coming increasingly popular for many applica-
tions. This paper presents an evaluation of de-
sign methods and concepts of one particular re-
configurable architecture: soft-core processors.
Soft-core processors provide a lot of options for
system designers. System flexibility is heavily in-
creased, while a high execution speed can still
be attained. A detailed overview of the Xilinx
MicroBlaze soft-core is given, as well as soft-
core implementations of established fixed-core
processors like the Intel Pentium and the Z80.

1 Introduction

FPGA design saw an increasing growth in pop-
ularity the last decade. This is because of sev-
eral reasons, but mainly because of the low non-
recurring engineering costs and the short design
times compared to the ASIC design process.

In this paper, characteristics of soft-core pro-
cessors are presented. An overview is given
of design aspects, and some dedicated soft-core
processors are mentioned. The Xilinx Micro-
Blaze [5] processor is talked about in more detail.
Furthermore, soft-core implementations of fixed-
core processors are dealt with. An implemen-

tation of the Intel Pentium [9] processor on an
FPGA is reviewed in terms of performance and
scalability. Eventually, advantages and disadvan-
tages of cored and non-cored FPGA designs are
evaluated.

The remainder of this paper is organized as
follows. Section 2 presents general concepts
about FPGA design, and reasons for its popular-
ity. Subsequently, Section 3 gives an overview
of the characteristics of a soft-core processor. In
Section 4, examples of dedicated soft-core pro-
cessor designs are given, and an architectural
overview of the Xilinx MicroBlaze soft-core pro-
cessor is presented. Section 5 deals with soft-
core implementations of fixed-core processors,
and an implementation of the Intel Pentium is re-
viewed. Hereafter, advantages and disadvantages
of cored FPGA designs are evaluated in Section
6. Finally, Section 7 summarizes the evaluated
design aspects.

2 Background

For the design of systems on chip (SoCs), the us-
age of FPGAs is increasing more and more. In
many situations, where normally an ASIC would
have been designed, an FPGA design has more
advantages. Different aspects of FPGA design
are presented in this Section.

Figure 1: FPGA VS ASIC design times

2.1 Advantages of FPGA design

Designing for FPGAs brings lower non-recurring
engineering (NRE) costs than designing the same
SoC for an ASIC. This is mainly caused by the
fact that no external NRE costs have to be made;
the IC itself is already manufactured (and payed
for). The manufacturing process of the IC is re-
sponsible for a large part of the costs. A mask
set for an ASIC in the 90 nm process cost about
$1M [11].

Concurrent development of hardware and
software is possible when designing SoCs on
FPGAs. Because it is possible to instantly make
design and debug changes, hardware and soft-
ware development teams can cooperate more ef-
fectively.

Because of this concurrent development of
hardware and software, and the fact that the phys-
ical ICs are already fabricated, the product lead
times have become very short compared to ASIC
designs. Average FPGA and ASIC design times
are given Figure 1 [10].

Due to its pre-designed circuitry, there will not
occur any issues related to crosstalk (XT) in an
FPGA design. These issues include capacitive,
inductive or conductive coupling between differ-
ent circuit elements.

When designing for an FPGA, the designer
does not have to deal a lot with timing is-
sues. This is because extra routing and timing
(like digital clock managers) are implemented on
FPGAs.

Figure 2: FPGA design space

2.2 Disadvantages of FPGA design

When a design has to be mass-produced, the
costs will be very high for the physical chips
alone. Of course there are low NRE costs, but
these are one-time only costs, and will be fac-
tored out by the number of ICs needed. This is
probably the most important reason for not im-
plementing a design on an FPGA. An FPGA can
cost in the order of 100 times more than an ASIC
[11].

The operation speed of a design on an FPGA
slower than the same design on an ASIC. This
varies , depending on the specific design.

When implementing the same design on an
FPGA and an ASIC, the total area usage will be
higher on an FPGA. This is mainly because of
the routing logic needed.

Every time an FPGA-based system is powered
on, the FPGA needs to be reconfigured (there are
some exceptions, like the recently released Xil-
inx Spartan-3AN [5]). This means that there has
to be some extra non-volatile memory in the sys-
tem, and a controller that is able to configure the
FPGA with its design.

2.3 Design space within FPGA develop-
ment

The design space within FPGA development can
be divided into different sections. Figure 2
presents an overview of this division.

First, the design space is split up in designs
that have an ASIC-like architecture and designs
that have a CPU-like architecture. The ASIC-
like designs are able to perform a fixed number
of tasks, in specific implementation. The CPU-
like designs can perform multiple tasks, mak-
ing use of the instruction set of a general pur-
pose processing unit. One can write software for
this, granted that there is a tool-chain (compiler,
linker, etc) available. This paper focusses on the
CPU-like designs.

Subsequently, the design space is separated
into microprocessor and microcontroller designs.
Microcontroller refers to a complete SoC, mostly
including some peripherals, random access mem-
ory, program and data memories. Usually a lot
slower than a microprcessor. This paper elabo-
rates about microprocessor implementations.

Practically, there are two ways of embedding a
microprocessor in an FPGA design. The first one
is embedding a hard-wired core in an FPGA. An
example of such an implementation is the Virtex-
II Pro [5] FPGA by Xilinx. This FPGA has up to
two PowerPC cores embedded. The other possi-
bility is a so-called soft-core, which is practically
an implementation of a processing core which is
dynamically (re-)configured on the FPGA. This
remainder of this paper will deal with soft-cores.

The implementation of a soft-core can take
two forms. The first one is in the form of an
already established core. For example an im-
plementation of a MIPS or Pentium architecture.
Section 5 elaborates on these cores. The second
implementation is in the form of an architecture
that is designed as a dedicated (reconfigurable)
core. Section 3 gives examples of such cores.

3 Soft-core processors

This Section presents information about soft-
core processors in general. General concepts,
and speed/flexibility trade-offs are presented in
this Section.

3.1 What is a soft-core processor?

As stated earlier, a soft-core processor is a dy-
namically (re-)configurable processing core (on
an FPGA). When the source of a soft-core is
available, it is extremely easy to adapt this core to
the designer’s own needs and wishes. Extra pe-
ripherals like UARTs can be added or removed
easily.

One of the main advantages of soft-core pro-
cessors is, that they can be used as general pur-
pose processors like known in many (personal)
computer systems. When a tool-chain is avail-
able, a programmer can write applications for
these cores in a high-level programming lan-
guage like C or C++.

Combining multiple processing cores into one
FPGA design is relatively easy. Section 4.2 will
present a specific design method for implement-
ing multiple MicroBlaze cores into one FPGA.

Using a general purpose processor based de-
sign, sufficient ‘headroom’ is ensured. Head-
room is used as a term to indicate that there is
space available for future system elements that
don’t have reason for existence at the time of
the initial release. It is for example easy to add
new peripherals to an existing bus architecture.
A soft-core can also be used as a reconfigurable
co-processor.

3.2 Speed/flexibility trade-off

When designing computer systems, the designer
faces a trade-off between system speed and flex-
ibility. Figure 3 depicts an overview of dif-
ferent technologies, organized according to this
speed/flexibility trade-off. At one end of the
spectrum resides the ASIC, which has a rela-
tive high execution speed, but a very low flex-

Figure 3: Speed/flexibility trade-off

ibility. After all, an ASIC is designed to ex-
ecute (just) one function. At the other end of
the spectrum resides the general purpose proces-
sor (GPP). A GPP has a relative slow execution
of tasks, because instructions have to be fetched
and decoded from memory before execution can
start. Also, most (complicated) functions are
composed of more than one instruction. The Fig-
ure shows that FPGA design and GPP design
only differ in the ’Time to high performance’ cri-
terion. With the use of soft-cores we want to fill
the gap between ASIC design and GPP design;
we want to be able to design systems which are
very flexible, and at the same time are able to
perform very fast at specific tasks.

4 Dedicated soft-core processors

There are several soft-core processors designed
for FPGAs, both commercially and freely. Ex-
amples are the Altera NIOS II [1] core, the
OpenSPARC [4] core and OpenRISC 1000
[3]. Xilinx, the world’s largest manufacturer of
FPGAs designed two soft-cores, the PicoBlaze
[5] and the MicroBlaze [5] cores. The PicoBlaze
core is actually an 8 bit microcontroller. Micro-
Blaze is a full-featured 32 bit RISC core. This
Section presents more information about the Mi-
croBlaze soft-core.

4.1 Xilinx MicroBlaze architecture

The MicroBlaze soft-core processor is a 32 bit
RISC processor, with a maximum clockspeed of
150MHz. A Harvard-style bus architecture is
used, so there are separate instruction and data

Figure 4: MicroBlaze block diagram

busses. The IBM CoreConnect [2] bus architec-
ture is used for connecting peripherals to the the
MicroBlaze.

Xilinx released its Embedded Development
Kit (EDK) software to easily modify the Micro-
Blaze core. Extra peripherals like UARTS, eth-
ernet controllers or other IP cores can be easily
configured using the EDK. It also offers the ca-
pability of generating an ASIC design out of the
the MicroBlaze FPGA design.

A fully featured toolchain is available for
the MicroBlaze core. Versions of the GNU C
Compiler, GNU Debugger, assembler, linker and
other tools have been adapted to work with the
MicroBlaze.

A default configuration of the MicroBlaze core
uses 920 CLBs. On a Spartan-II FPGA, it uses
approximately 80% of the available resources.
On a Virtex-II Pro FPGA, it uses approximately
1% [10].

Figure 4 depicts a block diagram of the Mi-
croBlaze core [5]. The OPB busses are the On-
chip Peripheral Busses, as defined by the IBM
CoreConnect architecture. The Local Memory
Bus (LMB) are used to communicate with local
memories. The Fast Simplex Link (FSL) inter-
faces are used to connect accelerating hardware
like co-processors to the MicroBlaze architec-
ture. Up to 8 interfaces are available. The Xilinx
CacheLink (XCL) interface provides an interface
to cache memories.

Figure 5: MicroBlaze multi-processing topology

4.2 A MicroBlaze multi-processor envi-
ronment

Figure 5 depicts a multi-processor topology us-
ing MicroBlaze cores [6]. The cores and some
fast peripherals are connected to the OPB bus.
An arbiter takes care of arbitrating the bus. All
MicroBlaze cores have independent access to an
external memory. Slower peripherals are usually
connected to another bus, that is connected with
a bridge to the OPB.

4.3 When to choose for MicroBlaze?

When designing computer systems, it is in many
cases useful to use a general purpose processor
in the design. Section 3 elaborates more on the
question why to use a soft-core processor. The
MicroBlaze core is available for every developer
who has a license for the EDK software. Be-
cause the EDK software is widely used in indus-
try, and the MicroBlaze core is supported on a
wide range of popular Xilinx FPGAs it is a very
cost-effective solution in many cases. The ta-
ble below presents the performance of the Mi-
croBlaze core on different FPGAs. Performance
is given in Dhrystone MIPS (DMIPS).

FPGA Size (LUTs) DMIPS
Virtex-5 1010 240
Virtex-4 1809 184
Spartan-3 1843 115

5 Soft-core implementations of
fixed-core processors

Developing new processors is a time consuming
task. Not only have the number of transistors per
chip increased exponentially, the introduction of
techniques such as pipelining increase the com-
plexity of the models dramatically. The complex-
ity of simulation and testing is increasing in line
with the chip complexity.

A new way to test and experiment on proces-
sor concepts, is to implement them on an FPGA.
This way, they can be tested and simulated in an
environment that achieves almost the same per-
formance as the real implementation.

Another reason for implementing processor
cores on FPGAs, is for education. Having a
microprocessor implementation running on an
FPGA can give the student a much better idea
of the architecture of a microprocessor. This in
contrast to a software emulator; changes to the
design can be made easily, and the effects can be
‘visualized’ on a real chip.

5.1 MIPS implementation

In [7], a 32-bit MIPS CPU was designed for the
use in SoCs and for educational purposes. 25
of the most used instructions were implemented
in this design (mostly load/store, boolean, shift
and branch instructions). A bottom-up design ap-
proach was used, starting with the design of the
memories, boolean functions and register files.

The processor was implemented on a Xilinx
XCS200 FPGA (200K gates). The processor was
tested with an image processing implementation.

It was also demonstrated to embed this design
in a SoC, with the image processing device and
the MIPS processor in the same FPGA (that has
more than 600K gates).

5.2 Z80 implementation

An implementation of a Z80 processor [8], was
solely designed for educational purposes. A
number of goals to be understood by students af-
ter studying the Z80 design are stated below:

1. What does actually take place on the hard-
ware?

2. How does communication over busses take
place ?

3. What bus contention problems take place
when organising micro-operations of a
machine-cycle?

These goals are visualized by presenting the
states, buses and other hardware graphically. By
actually presenting it visually and by creating a
possibility to iterate through a program step-by-
step, the student obtains a better insight in the
microprocessor.

5.3 Intel Pentium implementation

Developers at Intel implemented a Pentium 75
[9] processor on a Xilinx Virtex4 LX200 [5]
FPGA. The FPGA was made pin-compatible
with a standard Socket 7 motherboard. It is able
to boot and run Windows XP and Fedora Core 4.
Tests proved the FPGA implementation was able
to execute all instructions according to expecta-
tions.

The mainboard was clocked down from 75
MHz to 25 MHz. Although no obvious reason
is stated in [9], this probably has been done be-
cause the routing tools for the FPGA weren’t
able to successfully rout the design for use with
a 75 MHz clock. The used technology was 90
nm, while the original Pentium was fabricated on
600 nm technology. This FPGA implementation
has a slow-down of 3x compared to the original
model. When the generation gap (of 12 years)
is taken into account, it can be stated that this
Pentium core could be clocked at 750 MHz using
current silicon technology (90 nm). This is just a

rough analysis, using the fact that a current desk-
top processor has approximately 5x the number
of pipeline stages (and hence 5x the clock rate).

5.4 Why implement a Pentium on an
FPGA?

The Pentium simulation was extended with some
special features, exploiting the possibilities of the
FPGA. This gives the designer the possibility to
explore the design space.

The following modifications were made to the
core:

• The branch target buffer was expanded from
256 entries to 512 entries.

• The L1 Caches were expanded from a 8
KB 2-way set associative with 32 bytes per
cache line to 32 KB 8-way set associative.

• Cryptography engines were integrated, ex-
tending the system with some rather special
functionality.

In the next two Sections, implications caused
by the second modification are presented. The
first modification did not have large effects on
performance, and the third modification was
merely an addition to the system.

5.4.1 Implications on area

Figure 6 depicts an overview of the area increase
after changing the cache properties. As can be
seen from the figure, there was an increase of
more than 50% on the RAM blocks.

5.4.2 Implications on speed

Figure 7 depicts an overview of the performance
increase after changing the cache properties. The
speed increased with an average of 15.75%, with
crafty reaching as high as 40%.

Figure 6: Area increase of 32KB 8-way L1
caches VS 8KB 2-way L1 caches

Figure 7: Performance increase of 32KB 8-way
L1 caches VS 8KB 2-way L1 caches

6 Advantages and disadvantages
of (soft-)cores

In this chapter, the advantages and disadvantages
will be discussed of (soft-)cores. First, in section
6.1, there will be a discussion between FPGAs
equipped with and those without a core. Next,
a discussion in section 6.2 will be on soft versus
hard-cores.

6.1 FPGAs with GPP core VS FPGAs
without GPP core

Advantages of FPGAs with a GPP core:

• FPGAs with a core are software pro-
grammable. A high-level programming lan-

guage like C or C++ can be used to deter-
mine the system function(s).

• FPGAs with a core are easily up-
dated/upgraded with new functions,
because they can be programmed in
software. This saves a lot of money.

• FPGAs with a core can easily communicate
with peripherals next to the system. When
a software library for these peripherals is
available, software functions can be used for
programming.

Disadvantages of FPGAs with a GPP core:

• The core usually takes a fair amount of re-
sources on the FPGA. This depends on the
host FPGA and on the core, but not every
situation is suited for a core-based design.

• When using a GPP core, a com-
piler/linker/debugger toolchain should
be available for the given architecture. This
is not always the case (to some extend).
Designing a toolchain takes a lot of time.

• Because each instruction for the processor
has to be fetched and decoded from a mem-
ory, a speed degradation takes place.

6.2 FPGAs with a soft-core VS FPGAs
with a hard-core

Advantages of FPGAs with a soft-core:

• A soft-core can be removed from the design
when it is not needed. This saves a lot of
area, that can be used for other elements.

• A soft-core can be customized to the de-
mands of the designer. Heterogeneous func-
tions like large multipliers can be excluded,
when not needed.

• A soft-core can be reconfigured at run-time
to meet other constraints.

Disadvantages of FPGAs with a soft-core:

• A soft-core uses many resources from the
FPGA. Heterogeneous functions on the
FPGA are in many cases taken by the soft-
core. A fixed-core has its own hard-wired
hardware.

• For most hard-wired cores, a toolchain is al-
ready available. This is not always the case
for soft-cores.

• A fixed-core is a lot more optimized for the
silicon technology. Manually placed and
overthought blocks are inside, instead of an
implementation routed by software.

7 Summary

FPGA design saw an increasing growth in pop-
ularity the last decade. This is mainly because
development times are drastically lower than de-
signing ASIC systems. NRE costs are also much
lower than with ASIC design.

When designing FPGA based systems with a
microprocessor architecture, one can choose for
a soft-core processor, or an FPGA with a built-in
fixed-core processor. A soft-core processor is a
general purpose processor described by an HDL,
which can be modified by the designer. This pro-
cessor is programmable using a (high-level) pro-
gramming language, making use of the proces-
sor’s instruction set.

With a soft-core processor, a design be-
comes more flexible, while still keeping high-
performance parts inside the FPGA.

The Xilinx MicroBlaze 32 bit RISC soft-core
processor is available for most Xilinx FPGAs. It
can be easily adapted to the designer’s needs. A
full-featured GNU toolchain is available for soft-
ware development.

Developing new microprocessors is a time
consuming task. To test and experiment on these
processor-concepts, they can be emulated on an
FPGA. Recently, a Pentium processor was im-
plemented on an FPGA. The Pentium simula-
tion was extended with some special features to
benchmark the changes.

References

[1] Altera. http://www.altera.com/.

[2] IBM CoreConnect. http://www-
03.ibm.com/chips/products/coreconnect/.

[3] Opencores.org. http://www.opencores.org/.

[4] OpenSPARC.net.
http://www.opensparc.net/.

[5] Xilinx. http://www.xilinx.com/.

[6] V. Asokan. Designing Multiprocessor Sys-
tems in Platform Studio. Xilinx, April
2007.

[7] C. Chang, C. Huang, Y. Lin, Z. Huang, and
T. Hu. FPGA Platform for CPU Design and
Applications. In Proceedings of 2005 5th
IEEE Conference on Nanotechnology, July
2005.

[8] H. Diab and I. Demashkieh. A reconfig-
urable microprocessor teaching tool. In
IEEE PROCEEDINGS, volume 137, pages
287–292, September 1990.

[9] SL. Lu, P. Yiannacouras, T. Suh, and
R. Kassa. An FPGA-Based Pentium in a
Complete Desktop System. In FPGA’07,
February 2007.

[10] K. Parnell and R. Bryner. Comparing
and Contrasting FPGA and Microproces-
sor System Design and Development. Xil-
inx, July 2004.

[11] D. Pramanik, H. Kamberian, C. Progler,
M. Sanie, and D. Pinto. Cost effective
strategies for asic masks. Cost and Per-
formance in Integrated Circuit Creation,
5043:142 – 152, February 2003.

