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Abstract

Reconfigurable architectures are becoming in-
creasingly popular among designers. This paper
presents a survey of design and implementation
methods of reconfigurable architectures. Among
basic implementation characteristics, system-
level architectures are presented. Differences
between fine- and coarse-grain development are
becoming more important. Current trends in re-
configurable computing are adding more hetero-
geneous functions to the hardware, using soft-
core processors and using coarse-grained fab-
rics.

1 Introduction

Designing architectures for (embedded) com-
puter systems using reconfigurable hardware is
becoming more popular now that classical draw-
backs are diminishing. Hardware like field pro-
grammable gate arrays (FPGAs) and complex
programmable logic devices (CPLDs) are used as
building blocks for reconfigurable computing.

In this paper, a survey of reconfigurable ar-
chitectures is presented. First, some background
information about reconfigurable computing is
provided. After this, different system concepts
will be discussed. After evaluating fine-grain and

coarse-grain design methods, trade-offs are given
between those two.

The remainder of this paper is organized as
follows. Section 2 provides basic insight in re-
configurable computing, as well as reasons why
to choose for it. In Section 3, characteristics of
FPGAs and CPLDs are discussed. Subsequently,
Section 4 presents an overview of system-level
architectures, and how they are used by today’s
industry. Section 5 discusses different methods
of reconfiguring devices. Different aspects of
fine-grain and coarse-grain design are evaluated
in Section 6. These aspects are followed by de-
sign trade-offs in Section 7. Section 8 presents
the conclusions of the survey.

2 Background

Reconfigurable computing is getting more and
more important in the (embedded) comput-
ing world. This is mostly because of the
speed/flexibility trade-off which holds in archi-
tectural design. This Section gives more insight
about the background of reconfigurable comput-
ing.

2.1 Speed/flexibility trade-off

When designing computer systems, one faces
the speed/flexibility trade-off at some point [16].
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Figure 1: Speed/flexibility trade-off

The designer has to make a choice whether the
design focus will be on the speed of the system,
or on the functional flexibility. Figure 1 presents
a schematic overview of the speed/flexibility
trade-off.

The general purpose processor (GPP) stands at
one end of the spectrum. A GPP is very flexible,
as it can execute any function. Each function can
be assembled by various instructions supported
by the GPP. However, fetching instructions from
memory and decoding them costs (a lot of) time.
This, combined with the fact that most (com-
plex) functions are assembled of (a lot) more than
one instruction, explains why a GPP is relatively
slow.

At the other end of the spectrum, an appli-
cation specific integrated circuit (ASIC) can be
found. Because an ASIC is designed for one spe-
cific task, there is no need for an instruction set.
This implies that the design of an ASIC can be
optimized for this specific task, and can thus ex-
ecute it relatively fast.

Solutions at other places in the spectrum, gen-
erally consist of digital signal processors (DSPs).
It should be noted that the exact position of a
DSP in the spectrum cannot be given: this de-
pends on the type of DSP. Some DSPs are de-
signed to be more flexible; others to have a higher
performance.

2.2 Why choose for reconfigurable com-
puting?

With the use of reconfigurable hardware, one
tries to fill the gap between a hardware-only
(ASIC) and a software-only (GPP) solution [8].
It is intended to achieve a higher performance
than a software-only solution, and maintain more

flexibility than a hardware-only solution.

Research results by Stitt et al [18] show that
moving critical software loops to reconfigurable
hardware results in an average speedup of 3 to
7 times compared to the original system. In ad-
dition to this speedup, energy savings of 35% to
70% are reached. These are good motivations to
choose for a reconfigurable architecture.

2.3 Granularity

An aspect which is very important in reconfig-
urable design, is granularity. The granularity
denotes the hardware abstraction level [16][15].
Generally speaking, there are two forms of gran-
ularity: fine-grained reconfiguration, and coarse-
grained reconfiguration.

When a fine-grained approach is used, it is
possible to manipulate bitwise, so every single
bit can be separately routed/used. Configuration
is usually done by means of a netlist, which de-
scribes the connections within an electronic cir-
cuit.

A coarse-grained design, in contrast, usually
does not allow bitwise manipulation. Word or
sub-word maniplulation is more generally the
case in coarse-grain design. Coarse-grain de-
signs are usually configured by means of connec-
tions between complete functional units.

3 Design approaches

The most used reconfigurable logic devices in
industry are FPGAs [8][19][5] and CPLDs [5].
This Section presents differences between these
devices, and implementation details.

3.1 FPGAs and CPLDs

A big practical difference between FPGAs and
CPLDs is that an FPGA is volatile, and a CPLD
is non-volatile. This means that an FPGA cannot
hold its configuration when powered off, but a
CPLD can.

An FPGA is based on configurable logic
blocks (CLBs). One CLB is based on one or
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Figure 2: SRAM bit

more lookup tables (LUTs). In the next Section,
the implementation of a CLB is presented. In
Section 3.3, the implementation of a LUT is pro-
vided. There are two classical ways of configur-
ing FPGAs. The first one is based on antifuses,
the second one is based on SRAM memory.

An antifuse is the opposite of a normal fuse;
when the voltage across the antifuse exceeds a
certain level, a connection is made. The anti-
fuse technology is not very popular these days,
because a programmed antifuse FPGA is not re-
configurable.

SRAM [6][7] stands for static random access
memory. It should be noted that this is in most
cases not a good name; only in a few FPGAs the
SRAM memory is randomly accessible. SRAM
memory holds its state only when powered on.
Figure 2 shows the implementation of an SRAM
bit.

A CPLD is based on logic array blocks
(LABs). These LABs consist of macrocells,
which are AND/OR planes. Because they are
using AND/OR planes, electrically erasable pro-
grammable random access memory (EEPROM)
can be used for configuring CPLDs. An advan-
tage of this method is that the state of memory is
kept after power-off.

In an FPGA, EEPROM memory cannot be
used for configuration, because the type of switch
that is needed is one that can simply connect or
isolate two wires, rather than combining wires in
a wired-AND or wired-OR fashion [5].

FPGA based architectures are considered fine-
grain, and CPLD architectures coarse-grain. This
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Figure 3: Standard CLB design

is because a CPLD is configured using (large)
macrocells. Of course the granularity is a point
of discussion in this context. Section 6 will elab-
orate more on this topic.

3.2 Implementation of a CLB

Figure 3 shows an example of a CLB design.
Here, a 4-input LUT is used for determining the
CLB function. Some carry logic is added to
gain performance in additions and large AND-
operations. A D flip-flop (DFF) is included to
provide stateholding elements. This DFF can be
bypassed when not needed, by selecting the ap-
propriate multiplexer input behind the flip-flop.

3.3 Implementation of a LUT

Most commercial FPGAs contain three to six in-
put LUTs. In Figure 4, a three-input LUT is
shown. In principle, a LUT is a truth table for
an arbitrary function. With an N-input LUT, oN
configuration bits have to be programmed. So
any N-input logical function can be described.
Every combination of input bits corresponds to
exactly one programmed bit.
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3.4 Switchbox routing

Figure 5 depicts an FPGA architecture. Blocks
with an L inside represent logic blocks, blocks
with a C are connection blocks, and blocks with
an S are switch blocks. The difference between
connection blocks and switch blocks is that con-
nection blocks make connections between logic
blocks, and switch blocks between channels.
Figure 6 shows how a connection is made in a
switch block with an SRAM bit like in Figure 2.
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Figure 6: SRAM bit used for routing
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Figure 7: Architecture I - External processing
unit

4 System-level architectures

This Section discusses different reconfigurable
system-level architectures. Architectures I to IV
are adapted from [8], architecture V is adapted
from [19]. Each of the following Sections
presents one architecture.

4.1 I External processing unit

Figure 7 shows the first architecture. The ar-
chitecture consists of a central processing unit
(CPU), with its own cache memory and I/O in-
terface, and a separate reconfigurable processing
unit. The reconfigurable unit communicates with
the CPU using the I/O facilities of the CPU. The
unit acts like a normal peripheral to the CPU. Be-
cause of this, the communication costs are rel-
atively high. Communication is not optimized
for high performance calculations. A system
with this architecture is useful in situations where
communication between the CPU and the recon-
figurable unit is not needed continually. A suit-
able application for this architecture is for exam-
ple emulation.

4.2 1I Attached processing unit

The second architecture is shown in Figure 8.
The architecture consists of a CPU with its own
cache memory and a reconfigurable unit con-
nected to the outside world using the same I/O
interface. The infrastructure on how the CPU and
the reconfigurable unit communicate is similar
those on symmetric multiprocessing (SMP) com-
puters. Both units have their own cache memory,
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Figure 9: Architecture III - Co-processor

but they share the I/O interface. An advantage
of this approach is that the communication costs
between the two units is much lower than in the
first architecture.

4.3 III Co-processor

The co-processor design is shown in Figure 9.
The reconfigurable unit acts as a co-processor
for the CPU. They have both access to the same
cache memory, and have the same connection to
the outside world. Because the reconfigurable
unit is attached to the CPU itself, communication
costs are lower than in the first two architectures.

4.4 1V Reconfigurable functional unit

Figure 10 depicts the fourth architecture. In this
architecture, the reconfigurable hardware is used
to provide reconfigurable functional units within
a host processor. An advantage of this archi-
tecture is that programming can be done by us-
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Figure 10: Architecture IV - Reconfigurable
functional unit
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Figure 11: Architecture V - Embedded processor

ing an already established programming environ-
ment. To be added are custom instructions, that
might change over time. The reconfigurable units
execute as functional units on the main micropro-
cessor datapath.

4.5 V Embedded processor

The fifth architecture, depicted in Figure 11,
looks like an inverted version of the fourth ar-
chitecture. In this situation, a CPU is embedded
inside the reconfigurable fabric. It is possible to
subdivide the CPU part into some variants:

e Heterogeneous functions

e GPP cores

— Hard-wired core

— Soft-core

Heterogeneous functions are hard-wired logi-
cal functions inside a reconfigurable device. Ex-
amples of such functions are (large) multipliers,
dividers, shifters or registers. It is a trend to see



more of these functions in FPGAs today, and thus
make them more coarse-grain architectures.

GPP cores can reside in two forms inside
the reconfigurable fabric. They can either be
hard-wired, or they can be a so called soft-core
[17]. A hard-wired core is usually an established
core, for which a complete tool-chain (compiler,
linker, debugger, etc) is available. A soft-core is
a processing core which resides in the reconfig-
urable part of the hardware. It can be very easily
adapted to the wishes of the designer, by adding
or removing peripherals.

For example, the Xilinx Virtex II-Pro [3]
FPGA embeds two hard-wired IBM PowerPC [2]
cores. As for soft-cores, the Xilinx MicroBlaze
[3] and Altera NIOS II [1] RISC cores are much
used nowadays.

5 Reconfiguration methods

For fine-grained reconfigurable designs two re-
configuration schemes are available.  These
two models are compile-time reconfiguration and
run-time reconfiguration [16].

5.1 Compile-time
(CTR)

reconfiguration

In this scheme the hardware is reconfigured be-
fore the start of operation. It can no longer be
changed once the hardware is in operation. This
method is the most straight forward, however it
poses some constraints to the size and the flexi-
bility of the design [16].

5.2 Run-time reconfiguration (RTR)

In comparison with CTR, RTR enhances the
functional density of a design. Functional den-
sity is modeled as

D = 1/AT

with D being the functional density, A the func-
tion area and T the execution time. In order to
increase the functional density, some problems
specific to RTR have to be overcome.

The first problem that arises is the temporal
partitioning of a design. A design has to be parti-
tioned into time-exclusive segments, and specific
hardware has to be designed for each segment.
Most application break down into segments quite
naturally [16]. Secondly, reconfiguration over-
head has to be considered. In order to achieve
high clock rates, the time used to reconfigure the
hardware inbetween phases has to be kept to a
minimum. The last problem that has to be ad-
dressed is interconfiguration communication. As
data from each segment will be used for (one of
the) next segments, this data needs to be kept in
memory that will be sustained inbetween the dif-
ferent reconfiguration phases.

6 Fine- and coarse-grain design

This Section presents characteristics of fine- and
coarse-grain design.

6.1 Basics of fine-grain design

When considering fine-grain design, FPGAs are
the most common example of the design ap-
proach. When implementing an application on
fine-grain level, there are 3 main parameters that
have to be considered, the first of which is the
block granularity. As there are numerous FPGAs
on the market, it is important to know the num-
ber of basic elements (usually LUTSs, multiplex-
ors and/or flipflops) in one logic block. The den-
sity, measured in either number of logic blocks
or number of equivalent gates, is the second im-
portant design parameter. The last parameter is
the reconfiguration time. In a design that uses
CTR, this parameter is not of the utmost impor-
tance, but in order to make the use of RTR effi-
cient, the reconfiguration time should be kept to
a minimum. Next to total reconfiguration, partial
reconfiguration can also be achieved.

6.2 Basics of coarse-grain design

In order to enable coarse-grain design on a fine-
grain architecture (FPGA), some design innova-



tion is required. To make use of coarse-grain
routing, groups of single-bit wires have to be
routed, making use of a single configuration bit
(Figure 5-b) [19]. This poses some constraints
to the routing flexibility of the design. Also, ba-
sic logic blocks of the FPGA have to be grouped
into clusters to make the use of the coarse-grain
routing scheme efficient. Figure 17 [20] depicts
such a situation. The trade-offs for the loss of
flexibility in this design are a reduction in power,
area, delay and configuration time. In order to
make these reductions, a new CAD tool needs
to be introduced [12]. The second approach to-
wards coarse-grain design is the use of coarse-
grain arrays. Due to the large reconfiguration
overhead in FPGAs and, partially overlapping,
the high wiring/logic ratio, more coarse-grain so-
lutions are being developed. One of them is the
KressArray [13]. The KressArray is a lot less
overhead-prone and more area efficient than FP-
GAs (see Figure 12 [4]). The KressArray con-
sists of Processing Elements called rDPU (recon-
figurable DataPath Unit) arranged in a NEWS
(North, East, West, South) network [14]. Figure
13 shows a KressArray with 9 rDPUs. Figure 14-
a shows the layout of one rDPU with all its con-
nection, Figure 15-b shows all possible east-west
connections, Figure 14-c all possible north-south
connections. Figure 15-d is an rDPU serving as
an arithmetic operator, Figure 15-e¢ as an arith-
metic/routing unit and Figure 15-f as an exclu-
sive routing operator.

6.3 Implementation of
routing on an FPGA

coarse-grain

When coarse-grain routing and logic block clus-
tering are used, the following implementation
could be implemented on FPGA. As shown in
Figure 18, the clusters are again clustered in su-
per clusters. In this implementation both coarse-
grain tracks and fine-grain tracks are used to find
an optimal solution in the fine/coarse track ratio.
The data-path granularity (the number of clusters
per super-cluster) is set to 4, which is proven to
be a good choice in [11]. The cluster size, i.e. the
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number of logic blocks per cluster, is also set to
4, as discussed to be a good choice in [9].

In Figures 19, 20 and 21 [20] the input, out-

put and switch blocks are shown, respectively.
It clearly shows that both fine- and coarse-grain
tracks have been mixed.

6.4 The gain of coarse-grain routing

In Figure 22 [20] a plot is shown of the percent-
age of coarse-grain tracks in the design, where
0% 1is full fine-grain. It can be seen that the
inflexibility introduced by a small number of
coarse-grain tracks only introduces more area.
However, as a larger part of the tracks is used
for coarse-grain routing, the advantages start to
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Figure 18: Super cluster topology
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pay off, with a clear optimum between 30% and
50%.

7 Fine-grain VS coarse-grain

trade-offs

As mentioned earlier, in order to use coarse-grain
routing on an FPGA, a new CAD tool has to
be designed, adding significantly to the develop-
ment time [12]. Upon introduction, the routing
of coarse-grain tracks will diminish the flexibil-
ity in routing. More broad tracks will enlarge this
problem [20]. According to [10], wire delay will
keep increasing in comparison to the functional
unit delay. Therefore coarse-grain design will be-
come increasingly attractive in the future [16].

8 Conclusions

Currently, the trends in reconfigurable computing
are threefold. Firstly, it is becoming more popu-
lar to implement more heterogeneous functions
to speed up more complex calculations. Sec-
ondly, soft-cores are included in reconfigurable
devices to increase the flexibility and provide
support for general purpose computing and pro-
gramming. Finally, the use of coarse-grained
fabrics and coarse-grain designs are becoming
a topic of increasing interest in this field [19].
Especially as the wire delays keep increasing
relative to the functional unit delay, the use of
coarse-grain designs will become more common
[16][10].

As more RTR challenges are overcome and
the reconfiguration times decrease, more appli-



cations for this strategy arise [16].
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